Rassokhina I.I. (2024). The potential of Pseudomonas bacteria for the use in crop production. Agricultural and Livestock Technology, 7(3), 100–200. DOI: 10.15838/alt.2024.7.3.3 URL: http://azt-journal.ru/article/30027?_lang=en
Akimova E.E., Tereshchenko N.N., Zyubanova T.I. et al. (2018). Effect of bacteria of the genus Pseudomonas on peroxidase activity in wheat plants when infected with Bipolaris sorokiniana. Fiziologiya rastenii, 65(5), 366–375 (in Russian).
Bychkova A.A., Zaitseva Y.V., Sidorov A.V., Aleksandrova A.S., Marakaev O.A. (2022). Biotechnological potential of phosphate-solubilizing Pseudomonas migulae strain GEOT18. International Journal of Agricultural Technology, 18(4), 1403–1414.
Chen Y.P., Rekha P.D., Arun A.B. et al. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34, 33–41. DOI: 10.1016/j.apsoil.2005.12.002
Choi O., Kim J., Kim J.G. et al. (2008). Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16. Plant physiology, 146(2), 657–668. DOI: 10.1104/pp.107.112748
Chu T.N., Tran B.T.H., Van Bui L., Hoang M.T.T. (2019). Plant growth-promoting rhizobacterium Pseudomonas PS01 induces salt tolerance in Arabidopsis thaliana. BMC research notes, 12(1), 11. DOI: 10.1186/s13104-019-4046-1
Dorjey S., Dolkar D., Sharma R. (2017). Plant growth promoting rhizobacteria Pseudomonas: A review. International Journal of Current Microbiology and Applied Sciences, 7(6), 1335–1344. DOI: 10.20546/ijcmas.2017.607.160
Dubeikovsky A.N., Mordukhova E.A., Kochetkov V.T., Polikarpova F.Y., Boronin A.M. (1993). Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing an increased amount of indole-3-acetic acid. Soil biology and Biochemistry, 25(9), 1277–1281. DOI: 10.1016/0038-0717(93)90225-Z
Feklistova I.N., Maksimova N.P. (2008). Obtaining Pseudomonas aurantiaca strains capable of overproduction of phenazine antibiotics. Microbiology, 77(2), 176–180.
Feklistova I.N., Maksimova N.P. (2008). Synthesis of pyrrolnitrin by the bacterium Pseudomonas aurantiaca B-162. Trudy Belorusskogo gosudarstvennogo universiteta, 3, 148–155 (in Russian).
Feklistova I.N., Maksimova N.P. (2009). Gibberellins of the bacterium Pseudomonas aurantiaca: Biological activity, approaches to the production and utilization of phytohormone producers. Trudy Belorusskogo gosudarstvennogo universiteta, 4(1) (in Russian).
Grineva I.A., Kuleshova Yu.M., Lomonosova V.A. et al. (2017). Induction of resistance in rape plants to salinity by elicitors – derivatives of bacteria of Pseudomonas and Bacillus genera. Zhurnal Belorusskogo gos. un-ta. Biologiya, 1, 38–43 (in Russian).
Gull M., Hafeez F.Y. (2012). Characterization of siderophore producing bacterial strain Pseudomonas fluorescens Mst 8.2 as plant growth promoting and biocontrol agent in wheat. African Journal of Microbiology Research, 6(33), 6308–6318. DOI: 10.5897/AJMR12.1285
Heng J.L.S., Zainual N.S.M. (2017). Effect of encapsulated Pseudomonas putida strain PF1P on plant growth and its microbial ecosystem. African Journal of Biotechnology, 16(41), 2009–2013. DOI: 10.5897/AJB2017.16164
Huang Z., Bonsall R.F., Mavrodi D.V., Weller D.M., Thomashow L.S. (2014). Transformation of Pseudomonas fluorescens with genes for biosynthesis of phenazine-1-carboxylic acid improves biocontrol of rhizoctonia root rot and in situ antibiotic production. FEMS Microbiology Ecology, 49(2), 243–251. DOI: 10.1016/j.femsec.2004.03.010
Ivanov V.A. (2023). Strategy for the development of agriculture in the European North of Russia. In: Lazhentsev V.N. (Ed.). Min-vo nauki i vysshego obrazovaniya RF, Komi nauchnyi tsentr UrO RAN, Institut sotsial’no-ekonomicheskikh i energeticheskikh problem Severa [Ministry of Science and Higher Education of the Russian Federation, Komi Scientific Center of the Ural RAS Department, Institute of Socio-Economic and Energy Problems of the North]. Syktyvkar: Print.
Jain R., Pandey A. (2016). A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities. Microbiological research, 190, 63–71. DOI: 10.1016/j.micres.2016.04.017
Kim J., Choi O., Kang J.H. et al. (1998). Tracing of some root colonizing Pseudomonas in the rhizosphere using lux gene introduced bacteria. Korean Journal of Plant Pathology, 14, 13–18.
Kuleshova Yu.M., Kamaeva M.V., Maksimova N.P. (2006). Production of Pseudomonas putida KMBU 4308 bacteria capable of overproduction of the pyoverdine pigment Pm. Vestnik Belorusskogo gos. un-ta. Ser. 2: Khimiya. Biologiya. Geografiya, 2, 48–52 (in Russian).
Kuleshova Yu.M., Maksimova N.P., Blazhevich O.V., Semak I.V. (2006). Identification and characterization of pyoverdine pm, a novel antiradical compound synthesized by the bacterium Pseudomonas putida KMBU 4308. Trudy Belorusskogo gos. un-ta, 1, 89–97 (in Russian).
Kuleshova Yu.M., Rybakova V.A., Feklistova I.N. et al. (2017). Selection principles of plant korne formation stimulations among bacteria Pseudomonas with antagonistic activity. Zhurnal Belorusskogo gos. un-ta. Biologiya, 3, 54–62 (in Russian).
Kumar A., Verma H., Singh V.K. et al. (2017). Role of Pseudomonas sp. in sustainable agriculture and disease management. Agriculturally Important Microbes for Sustainable Agriculture, 2, 195–215. DOI: 10.1007/978-981-10-5343-6_7
Kumari P., Meena M., Gupta P. et al. (2018). Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek). Biocatalysis and Agricultural Biotechnology, 16, 163–171. DOI: 10.1016/j.bcab.2018.07.030
Kuzmina L.Yu., Guvatova Z.G., Ionina V.I. et al. (2016). The mobilization of calcium orthophosphate by bacteria from Advenella and Pseudomonas genera. Vestnik zashchity rastenii, 89(3), 90–91 (in Russian).
Maksimov I.V., Abizgil’dina R.R., Pusenkova L.I. (2011). Plant growth promoting rhizobacteria as alternative to chemical crop protections from pathogens. Prikladnaya biokhimiya i mikrobiologiya, 47(4), 373–385 (in Russian).
Misra H.S., Khairnar N.P., Barik A. et al. (2004). Pyrroloquinoline-quinone: A reactive oxygen species scavenger in bacteria. FEBS letters, 578, 26–30. DOI: 10.1016/j.febslet.2004.10.061
Prabhukarthikeyan S.R., Keerthana U., Raguchander T. (2018). Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants. Microbiological Research, 210, 65–73. DOI: 10.1016/j.micres.2018.03.009
Rassokhina I.I., Marakaev O.A. (2023). Assessment of morphophysiological parameters and productivity of Hordeum vulgare under the action of Pseudomonas sp. GEOT18 strain suspension. Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Estestvennye nauki, 3(43), 92–104. DOI: 10.21685/2307-9150-2023-3-8 (in Russian).
Rassokhina I.I., Platonov A.V. (2023). Effect of suspension of pseudomonas sp. GEOT 18 strain on growth and productivity of Barley variety sonnet. Vestnik agrarnoi nauki, 6(105), 50–55. DOI: 10.17238/issn2587-666X.2023.6.50 (in Russian).
Rassokhina I.I., Platonov A.V., Marakaev O.A., Zaitseva Yu.V. (2020). Effectiveness of Avena Satina L. seed inoculation by the strain Pseudomonas sp. GEOT18 promising for creating biologicals. Mezhdunarodnyi sel'skokhozyaistvennyi zhurnal=International Agricultural Journal, 5(377), 52–55. DOI: 10.24411/2587-6740-2020-15093 (in Russian).
Rassokhina I.I., Platonov A.V., Platonov A.A. (2022). The genus Pseudomonas sp. Bacteria effect on Triticosecale growth and productivity. Vestnik KrasGAU=Bulletin KraSAU, 1(178), 93–99. DOI: 10.36718/1819-4036-2022-1-93-99 (in Russian).
Safronova V.I., Stepanok V.V., Engqvist G.L., Alekseyev Y.V., Belimov A.A. (2006). Root-associated bacteria containing 1-aminocyclopropane-1-carboxyate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biology and Fertility of Soils, 42, 267–272. DOI: 10.1007/s00374-005-0024-y
Sah S., Krishnani S., Singh R. (2021). Pseudomonas mediated nutritional and growth promotional activities for sustainable food security. Current Research in Microbial Sciences, 2, 100084. DOI: 10.1016/j.crmicr.2021.100084
Singh P., Singh R.K., Guo D.-J. et al. (2021). Whole genome analysis of sugarcane root-associated endophyte Pseudomonas aeruginosa B18-A plant growth-promoting bacterium with antagonistic potential against Sporisorium scitamineum. Frontiers in Microbiology, 12, 628376. DOI: 10.3389/fmicb.2021.628376
Singh P., Singh R.K., Zhou Y. et al. (2022). Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: A review. Journal of Plant Interactions, 17(1), 220–238. DOI: 10.1080/17429145.2022.2029963
Syrmolot O.V., Kocheva N.S. (2019). Impact assessment of bacterias of Bacillus and Pseudomonas genus on soy productivity. Mezhdunarodnyi nauchno-issledovatel’skii zhurnal, 10–2(88). DOI: 10.23670/IRJ.2019.88.10.02 (in Russian).
Tiwari P., Singh J.S. (2017). A plant growth promoting rhizospheric Pseudomonas aeruginosa strain inhibits seed germination in Triticum aestivum (L) and Zea mays (L). Microbiology Research, 8(2), 7233. DOI: 10.4081/mr.2017.7233
Uzair B., Kausar R., Bano S.A. et al. (2018). Isolation and molecular characterization of a model antagonistic Pseudomonas aeruginosa divulging in vitro plant growth promoting characteristics. BioMed Research International, 1–7. DOI: 10.1155/2018/6147380
Van Peer R., Niemann G.J., Schippers B. (1991). Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417. Phytopathology, 81, 728–734.
Vansuyt G., Robin A., Briat J.F., Curie C., Lemanceau P. (2007). Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 20(4), 441–447. DOI: 10.1094/MPMI-20-4-0441
Vyas P., Gulati A. (2009). Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas. BMC Microbiology, 9, 1–15. DOI: 10.1186/1471-2180-9-174
Xie H., Pasternak J.J., Glick B.R. (1996). Isolation and characterization of mutants of the plant growth-promoting rhizobacteria Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Current Microbiology, 32, 67–71. DOI: 10.1007/s002849900012
Zhardetskii S.S., Khramtsova E.A. (2018). Effect of Pseudomonas mendocina 9-40 IRR-producing strain on plant stress tolerance. In: Biologicheski aktivnye preparaty dlya rastenievodstva. Nauchnoe obosnovanie – rekomendatsii – prakticheskie rezul'taty: mat-ly XIV Mezhdunar. nauch.-prakt. konf. [Biologically Active Preparations for Crop Production. Scientific Substantiation –Recommendations – Practical Results: Proceedings of the 14th International Scientific and Practical Conference] (in Russian).
Zhardetskii S.S., Putinskaya A.Ya., Khramtsova E.A. (2005). Growth-stimulating activity of a mutant strain of Pseudomonas mendocina bacteria. Vestnik BGU. Ser. 2: Khimiya. Biologiya. Geografiya, 32–35 (in Russian).
Zia R., Nawaz M.S., Siddique M.J., Hakim S., Imran A. (2020). Plant survival under drought stress: implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiology Research, 242, 126626. DOI: 10.1016/j.micres.2020.126626