VolRC RAS scientific journal (online edition)
RuEn

Journal section "General agriculture and plant growing"

The Use of Microorganisms as a Means to Increase Productivity and Sustainability of Agricultural Crops

Рассохина И.И.

Volume 4, Issue 3, 2021

Rassokhina I.I. The Use of Microorganisms as a Means to Increase Productivity and Sustainability of Agricultural Crops. Agricultural and Livestock Technology, 2021, vol. 4, no. 3. DOI: 10.15838/alt.2021.4.3.2 URL: http://azt-journal.ru/article/29088?_lang=en

DOI: 10.15838/alt.2021.4.3.2

Abstract   |   Authors   |   References
  1. Buryakov N.P. Feeding of pregnant dry and dairy cows. Molochnaya promyshlennost’=Dairy Industry, 2008, no. 4, pp. 37–40 (in Russian).
  2. Nikitin S.N., Zakharov S.A. Influence of mineral fertilizers, biopreparations and mature aftereffect on biological properties of soil and yielding ability of spring water. Vestnik Ul’yanovskoi gosudarstvennoi sel’skokhozyaistvennoi akademii=Vestnik of Ulyanovsk State Agricultural Academy, 2016, no. 2 (34), pp. 37–42 (in Russian).
  3. Montesinos E., Bonaterra A., Badosa E. et al. Plant-microbe interactions and the new biotechnological methods of plant disease control. International Microbiology, 2002, no. 5, pp. 169–175. Available at: https://doi.org/10.1007/s10123-002-0085-9
  4. Petrov V.B., Chebotar’ V.K. Microbiological preparations as the basis element of intensive agrotechnologies in crop production. Dostizheniya nauki i tekhniki APK=Achievements of Science and Technology of AICs, 2011, no. 8, pp. 11–15 (in Russian).
  5. Kolomiets E. Contribution of microbiological science to the development of agricultural technologies. Nauka i innovatsii=Science and Innovations, 2016, no. 6 (160), pp. 23–25 (in Russian).
  6. Ryabova O.V. On a problem of development of microbiological agents (fungicides and fertilizers) for conditions of the Northeast of the European part of the Russian Federation. Agrarnaya nauka Evro-Severo-Vostoka=Agricultural Science Euro-North-East, 2016, no. 1 (50), pp. 31–40 (in Russian).
  7. State catalog of pesticides and agrochemicals approved for use in the territory of the Russian Federation. In: Ministerstvo sel’skogo khozyaistva Rossiiskoi Federatsii [Ministry of Agriculture of the Russian Federation]. 2020. Vol. 1 (in Russian).
  8. Zakharenko V.A. Biotechnology and plant protection. Zashchita i karantin rastenii=Plant Protection and Quarantine, 2015, no. 11, pp. 3–6 (in Russian).
  9. Vorobeikov G.A. et al. A study of associative rhizobacteria efficiency for economic plants. Izvestiya Rossiiskogo gosudarstvennogo pedagogicheskogo universiteta im. A.I. Gertsena=Izvestia: Herzen University Journal of Humanities & Science, 2011, pp. 114–123 (in Russian).
  10. Biryukov E.V. Possibility of application of biological preparation thichoderma lignorum as means of microbiological fertilizer in conditions of Tambov region. Voprosy sovremennoi nauki i praktiki=Problems of Contemporary Science and Practice, 2008, no. 1 (11), vol. 1, pp. 84–92 (in Russian).
  11. Moya P., Barrera V., Cipollone J. et al. New isolates of Trichoderma spp. as biocontrol and plant growth–promoting agents in the pathosystem Pyrenophora teres-barley in Argentina. Biological Control, 2020, no. 141, pp. 104–152. Available at: https://doi.org/10.1016/j.biocontrol.2019.104152
  12. Sabaté D.C., Petroselli G. et al. Beneficial effect of Bacillus sp. P12 on soil biological activities and pathogen control in common bean. Biological Control, 2020, no. 141, pp. 1–8. Available at: https://doi.org/10.1016/j.biocontrol.2019.104131
  13. Vasil’eva E.N. et al. Endophytic microorganisms in fundamental research and agriculture. Ekologicheskaya genetika=Ecological Genetics, 2019, no. 17 (1), pp. 19–32. Available at: https://doi.org/10.17816/ecogen17119-32 (in Russian).
  14. Veselova S.V. et al. Straits of Bacillus regulate wheat resistance to greenbug aphid Schizaphis graminum Rond. Prikladnaya biokhimiya i mikrobiologiya=Applied Biochemistry and Microbiology, 2019, no. 1 (55), pp. 56–63. Available at: https://doi.org/10.1134/S0555109919010185 (in Russian).
  15. Maksimov I.V. et al. Prospects of application of lipopeptides producers bacteria for plant protection. Prikladnaya biokhimiya i mikrobiologiya=Applied Biochemistry and Microbiology, 2020, no. 56 (1), pp. 19–34. Available at: https://doi.org/10.31857/S0555109920010134 (in Russian).
  16. Tikhonovich I.A. et al. The use of preparation – an additional source of power plants. Plodorodie=Fertility, 2011, no. 3 (60), pp. 9–13 (in Russian).
  17. Shuliko N.N. et al. Effect of the complex fertilization and biopreparations on effective fertility of leached chernozem and barley productivity. Agrokhimiya=Agrochemistry, 2019, no. 2, pp. 13–20. Available at: https://doi.org/10.1134/S0002188119020133 (in Russian).
  18. Chebotar’ V.K. et al. Microbial preparations on the basis of endophytic and rhizobacteria to increase the productivity in vegetable crops and spring barley (Hordeum vulgare L.), and the mineral fertilizer use efficiency. Sel’skokhozyaistvennaya biologiya=Agriculture Biology, 2016, vol. 51, no. 3, pp. 335–342 (in Russian).
  19. Sytnikov D.M. Biotechnology of microbial nitrogen fixers and future trends of their preparations application. Biotekhnologiya=Biotechnologia, 2012, vol. 5, no. 4, pp. 34–45 (in Russian).
  20. Fatina P.N. Application of microbiological fertilizers in agriculture. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta=Vestnik of Astrakhan State Technical University, 2007, no. 4 (39), pp. 133–137 (in Russian).
  21. Kirichenko E.V., Kots’ S.Ya. Use of Аzotobacter chroococcum for development of complex biological preparations. Biotekhnologiya=Biotechnologia, 2011, vol. 4, no. 3, pp. 74–81 (in Russian).
  22. Kozhemyakov A.P., Timofeeva S.V. Biologics of complex action protect plants from diseases. Agrarnyi ekspert=Agricultural Expert, 2007, no. 2, pp. 26–29 (in Russian).
  23. Kotova Z.P., Drozdov S.N. The effect of biological products on potato productivity in Karelia. Agrarnaya nauka=Agrarian Science, 2006, no. 7, pp. 13–14 (in Russian).
  24. Chukhina O.V. et al. Effect of fertilizers and microbiological preparations on the quality and yield of rotation crops in Vologda Oblast. Plodorodie=Fertility, 2015, no. 1, pp. 25–29 (in Russian).
  25. Zavalin A.A. et al. Biologization of mineral fertilizers as method for increasing of their efficiency. Dostizheniya nauki i tekhniki APK=Achievements of Science and Technology of AICs, 2012, no. 9, pp. 45–47 (in Russian).
  26. Avdeenko A., Avdeenko S., Domatskiy V., Platonov, A. Bacillus subtilis based products as an alternative to agrochemicals. Research on Crops, 2020, no. 21 (1), pp. 156–159. Available at: http://dx.doi.org/10.31830/2348-7542.2020.026
  27. Falardeau J., Wise C., Novitsky L., Avis T.J. Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis Lipopeptides on Plant Pathogens. Journal of Chemical Ecology, 2013, no. 39, pp. 869–878. Available at: https://doi.org/10.1007/s10886-013-0319-7
  28. Porcel R., Zamarreño Á.M., García-Mina J.M., Aroca R. Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biology, 2014, no. 14 (36), pp. 1–12. Available at: https://doi.org/10.1186/1471-2229-14-36
  29. Xie S.-S., Wu H.-J., Zang H.-Yu et al. Plant growth promotion by Spermidine-Producing Bacillus subtilis OKB105. Molecular Plant-Microbe Interactions, 2014, vol. 7, no. 27, pp. 655–663. Available at: https://doi.org/10.1094/MPMI-01-14-0010-R
  30. Fedorova O.V. et al. Probiotic preparations based on microorganisms of the genus Bacillus. Vestnik tekhnologicheskogo universiteta=Bulletin of the Technological University, 2016, no. 15, vol. 19, pp. 170–174 (in Russian).
  31. Titova V.I., Dabakhova E.V., Smetov D.B. Study of microbiological and growth stimulating preparations for forage crops cultivation. Agrokhimicheskii vestnik=Agrochemical Herald, 2011, no. 2, pp. 31–33 (in Russian).
  32. Platonov A.V. et al. Productivity of forage grasses affected by microbial preparations in the Vologda region. Kormoproizvodstvo=Fodder Production, 2021, no. 1, pp. 21–25. Available at: https://doi.org/10.25685/KRM.2021.1.2021.001 (in Russian).
  33. Rassokhina I.I., Platonov A.V., Laptev G.Y., Bolshakov V.N. Morphophysical reaction of Hordeum vulgare to the influence of microbial preparations. Regulatory Mechanisms in Biosystems, 2020, no. 11 (2), pp. 220–225. Available at: https://doi.org10.15421/022032
  34. Castro R.O., Cantero E.V., Bucio J.L. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signaling and Behavior, 2008, no. 3 (4), pp. 263–265. Available at: https://doi.org/10.4161/psb.3.4.5204
  35. López-Bucio J., Campos-Cuevas J.C., Hernández-Calderón E. et al. Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin-and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 2007, no. 20 (2), pp. 207–217. Available at: https://doi.org/10.1094/MPMI -20-2-0207
  36. Zou C., Li Z., Yu D. Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. The Journal of Microbiology, 2010, no. 48, pp. 460–466. Available at: https://doi.org/10.1007/s12275-010-0068-z
  37. Blinkov E.A., Tsavkelova E.A., Selitskaya O.V. Formation of auxin strain Klebsiella planticola TLC-91 and its effect on the development of seeds of cucumber (Cucumis sativus L.). Mikrobiologiya=Microbiology, 2014, vol. 83, no. 5, pp. 543–551 (in Russian).
  38. Tsavkelova E.A., Klimova S.Y., Cherdyntseva T.A., Netrusov A.I. Microbial producers of plant growth stimulators and their practical use: A review. Applied Biochemistry and Microbiology, 2006, no. 42 (2), pp. 117–126. Available at: https://doi.org/10.1134/S0003683806020013
  39. Pérez-Montaño F., Alías-Villegas C., Bellogín R.A. et al. Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 2014, no. 169 (5–6), pp. 325–336. Available at: https://doi.org/10.1016/j.micres.2013.09.011
  40. Chernyad’ev I.I. The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress. Applied Biochemistry and Microbiology, 2009, no. 45 (4), pp. 351–362. Available at: https://doi.org/10.1134/S0003683809040012
  41. Smirnova E. et al. Features of hormonal balance of oat varieties in connection with photosynthesis and productivity. Mezhdunarodnyi sel’skokhozyaistvennyi zhurnal=International Agricultural Journal, 2013, no. 2, pp. 61–64 (in Russian).
  42. Bakhtenko E.Yu., Platonov A.V. Effect of 6-benzylaminopurine on wheat resistance to soil flooding. Agrokhimiya=Agrochemistry, 2004, no. 7, pp. 41–46 (in Russian).
  43. Tsavkelova E.A., Cherdyntseva T.A., Klimova S.Yu. et al. Orchidassociated bacteria produce indole3acetic acid, promote seed germination, and increase their microbial yield in response to exogenous auxin. Archives of Microbiology, 2007, vol. 188, no. 6, pp. 655–664. Available at: https://doi.org/10.1007/s00203-007-0286-x
  44. Wilkinson K.G., Dixon K.W., Sivasithamparam K. Effect of IAA оn symbiotic germination of аn Australian orchid and its production bу orchidassociated bacteria. Plant Soil, 1994, vol. 159, pp. 291–295. Available at: https://doi.org/10.1007/BF00009292
  45. Marakaev O.A., Titova O.V. On the possible participation of amino acids in auxin biosynthesis in Dactylorhiza maculata (L.) Soo (Orchidaceae). In: Regulyatory rosta i razvitiya rastenii v biotekhnologiyakh: tezisy VI Mezhdunarodnoi konferentsii [Regulators of Plant Growth and Development in Biotechnology: Abstracts of the Sixth International Conference]. Moscow, 2000. P. 49 (in Russian).
  46. Shekhovtsova N.V. et al. Auxine production by endophytic bacteria from undergrounf organs of Dactylorhiza maculata (L.) Soo (Orchidaceae). Vestnik OGU=Vestnik OSU, 2011, no. 12 (131), pp. 366–368 (in Russian).
  47. Rassokhina I.I. et al. Effectiveness of avena satina L. seed inoculation by the strain Рseudomonas sр. GEOT18 promising for creating biologicals. Mezhdunarodnyi sel'skokhozyaistvennyi zhurnal=International Agricultural Journal, 2020, no. 5 (377), pp. 52–55. Available at: https://doi.org/10.24411/2587-6740-2020-15093 (in Russian).
  48. Rojas-Solís D., Zetter-Salmón E., Contreras-Pérez M. et al. Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatalysis and Agricultural Biotechnology, 2018, no. 13, pp. 46–52. Available at: https://doi.org/10.1016/j.bcab.2017.11.007
  49. Andreolli M., Zapparoli G., Angelini E. et al. Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiological research, 2019, no. 219, pp. 123–131. Available at: https://doi.org/10.1016/j.micres.2018.11.003
  50. Oteino N., Lally R.D., Kiwanuka S. et al. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 2015, no. 6, pp. 745. Available at: https://doi.org/10.3389/fmicb.2015.00745
  51. Trinh C.S., Lee H., Lee W.J. et al. Evaluation of the plant growth-promoting activity of Pseudomonas nitroreducens in Arabidopsis thaliana and Lactuca sativa. Plant Cell Reports, 2018, no. 37, pp. 873–885. Available at: https://doi.org/10.1007/s00299-018-2275-8
  52. Ortiz-Castro R., Campos-García J., López-Bucio J. Pseudomonas putida and Pseudomonas fluorescens influence Arabidopsis root system architecture through an auxin response mediated by bioactive cyclodipeptides. Journal of Plant Growth Regulation, 2020, no. 39, pp. 254–265. Available at: https://doi.org/10.1007/s00344-019-09979-w
  53. Minaeva O.M., Akimova E.E. Effectiveness of applying bacteria Pseudomonas sp., strain b-6798, for anti-phytopathogenic protection of crops in Western Siberia. Tomsk State University Journal of Biology, 2013, no. 3 (23), pp. 19–37.
  54. Feklistova I.N. et al. Biological preparations for protection and increase of crop yield. In: Biologicheski aktivnye preparaty dlya rastenievodstva: materialy konferentsii [Biologically Active Preparations for Crop Production: Conference Materials]. Minsk, 2018. Pp. 196–198 (in Russian).
  55. Zolotarev V.N. The effectiveness of the use of bacterial biologics associative diazotrophs and nitrogen fertilizer in seed crops of annual ryegrass. Agrokhimiya=Agrochemistry, 2015, no. 7, pp. 11–16 (in Russian).
  56. Kunitsyna V.V., Stupina L.A. Influence of preparations of associative nitrogen-fixing bacteria on the formation of productivity of spring barley in the Priobskaya zone. In: Ot bioproduktov k bioekonomike: materialy II mezhregional'noi nauchno-prakticheskoi konferentsii (s mezhdunarodnym uchastiem) [From Bioproducts to Bioeconomics: Proceedings of the Second Interregional Scientific and Practical Conference (with International Participation)]. Ed. by Luk’yanov A.N. Barnaul: Izd. AltGTU, 2018. Pp. 139 (in Russian).
  57. Taylor C.C., Ranjit N.J., Mills J.A. et al. The effect of treating whole-plant barley with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for dairy cows. Journal of Dairy Science, 2002, no. 85 (7), pp. 1793–1800. Available at: https://doi.org/10.3168/jds.S0022-0302(02)74253-7
  58. Limanska N., Ivanytsia T., Basiul O. et al. Effect of Lactobacillus plantarum on germination and growth of tomato seedlings. Acta Physiologiae Plantarum, 2013, no. 35 (5), pp. 1587–1595. Available at: https://doi.org/10.1007/s11738-012-1200-y
  59. Kuwaki S., Ohhira I., Takahata M. et al. Effects of the fermentation product of herbs by lactic acid bacteria against phytopathogenic filamentous fungi and on the growth of host plants. Journal of Bioscience and Bioengineering, 2004, no. 98 (3), pp. 187–192. Available at: https://doi.org/10.1016/S1389-1723(04)00264-6
  60. Lapitskaya E.A. et al. “Biotrof-600” is a tomato growth stimulator. Agrarnyi vestnik Urala=Agrarian Bulletin of the Urals, 2008, no. 5, pp. 42–44 (in Russian).
  61. Gummalla S., Broadbent J.R. Tryptophan catabolism by Lactobacillus casei and Lactobacillus helveticus cheese flavor adjuncts. Journal of Dairy Science, 1999, no. 82 (10), pp. 2070–2077. Available at: https://doi.org/10.3168/jds.S0022-0302(99)75448-2

Article views

all: , this year: , this month: , today:

Article downloads

all: , this year: , this month: , today: